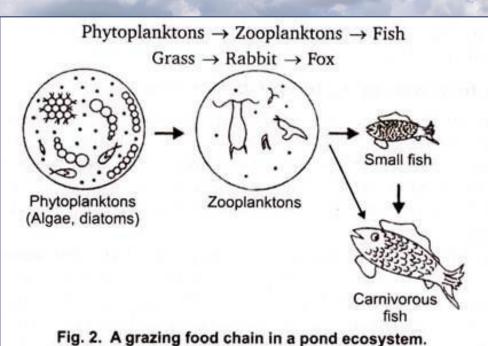
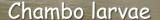


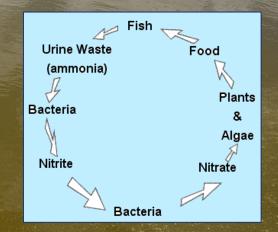
Larval Feed

Dr. B. Ueberschär, GMA

ueberschaer@gma-buesum.de


Hatchery Workshop Bunda, 2019


Food chain & Nutrient cycle in a Pond



Typical composition of artificial larval feed

High Protein content required...

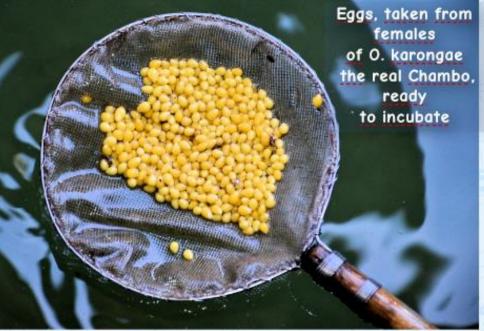
S. Dallacian States					T 7 2 20 00 00 00 00 00 00 00 00 00 00 00 0
Brand	Othohime	INVE Orange	GEMMA Micro	BioMar	MicroPro, R 4
Macro Nutrients					
Moisture	6.3%				<mark>5.1%</mark>
Crude protein	56.3%	56%	59%	58%	49.14%
Crude fat	15%	13%	14%	12%	20.47%
Crude fibre	2.8%	1%	0.2%	0.5%	
Crude ash	14.2%	10%	13%	11%	<mark>17.3%</mark>
Caloric energy					22 MJ/kg
Minerals, Micro Nutrients					
Calcium	2.7%	2.7%	1,5%	2.08%	
Phosphorus	2.3%	1.3%	2%	1.64%	?
Copper (cupric					
chelate of glycine,	7.0mg/kg	6mg/kg	10 mg/kg	8 mg/kg	?
hydrate)					
Manganese					
(manganese	24 0 //	50 ··· - /l· -	26 //	4.4 //	2
chelate of glycin,	31.8mg/kg	50 mg/kg	36 mg/kg	14 mg/kg	?
hydrate)					
Zinc (zinc chelate of		50 mg/kg	120 mg/kg	105 5 mg/kg	co malka
glycine, hydrate)		50 mg/kg	130 mg/kg	195.5 mg/kg	60 mg/kg
Selenium (b)					
selenmethionine,			a) 0.35 mg/kg		
selenised yeast		0.2 mg/kg	+ b) 0.03		10 mg/kg
inactivated & a)		0.3 mg/kg	•		40 mg/kg
sodium selenite			mg/kg		
(GEMMA))					
_					~

Malawi-Feed (Apatsa)

Malawi-Feed (Project)

Insect Protein Powder

Pellet Feed for Tilapia (Aller Aqua)


Malawi-Feed (Farmer Feed)

Summary

- Indoor rearing of Tilapia larvae has many advantages
- Main advantages: the species and numbers can be controlled, with approriate feed growth rates superior to pond culture
- However, advanced technology required
- Feeding (produce costs) and maintenance required
- Power for pumps, aeration, heating required
- Consideration of the "Return on equity (ROE)" ratio required before starting this business
- However, similiar production possible with small pond system; requires only artificial egg incubation unit and additional feed (natural feed may not be sufficient with high densities)

Hatchery Workshop Bunda, 2019

